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Abstract

We develop a stable finite difference approximation of the three-dimensional
viscoelatic wave equation. The material model is a superimposition of n stan-
dard linear solid mechanisms, which commonly is used in seismology to model
a material with constant quality factor Q. The proposed scheme discretizes
the governing equations in second order displacement formulation using 3n
memory variables, making it significantly more memory efficient than the
commonly used first order velocity-stress formulation. The new scheme is a
generalization of our energy conserving finite difference scheme for the elastic
wave equation in second order formulation [SIAM J. Numer. Anal., v. 45,
pp. 1902-1936 (2007)]. Our main result is a proof that the proposed dis-
cretization is energy stable, even in the case of variable material properties.
The proof relies on the summation-by-parts property of the discretization.
The new scheme is implemented with grid refinement with hanging nodes
on the interface. Numerical experiments verify the accuracy and stability of
the new scheme. Semi-analytical solutions for a half-space problem and the
LOH.3 layer over half-space problem are used to demonstrate how the number
of viscoelastic mechanisms and the grid resolution influence the accuracy. We
find that three standard linear solid mechanisms usually are sufficient to make
the modeling error smaller than the discretization error.

1 Introduction

Dissipative mechanisms in the earth lead to anelastic attenuation of seismic waves [1].
This attenuation is commonly modeled by describing the earth as a viscoelastic
constant-Q absorption band solid, meaning that the material has a quality factor
Q, which is independent of frequency. Such material behavior can be approximated
in the time-domain by superimposing n standard linear solid (SLS) mechanisms [3].
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In this article we develop a stable finite difference approximation of the three-
dimensional viscoelatic wave equation with an n-SLS material model. The proposed
scheme discretizes the governing equations in second order displacement formulation
using 3n memory variables, making it significantly more memory efficient than the
commonly used first order velocity-stress formulation. The discretization is a gener-
alization of our summation-by-parts finite difference discretization of the elastic wave
equation [18, 19, 21]. Our main result is a proof that the proposed discretization is
energy stable, even in the case of variable material properties.

There is a substantial number of papers on anelastic attenuation in the liter-
ature on seismic wave propagation. Liu et al. [15] showed that the constant-Q
material behavior can be approximated by superimposing n standard linear solid
(SLS) mechanisms. Day and Minister [6] introduced a rational approximation of
the viscoelastic modulus, which enabled realistic attenuation to be introduced in a
time-domain seismic wave simulation. Emmerich and Korn [7] pointed out that the
rational approximation of the viscoelastic modulus represents the rheological model
of a generalized Maxwell body. They devised a least-squares technique of optimizing
the coefficients in the rational approximation, which gave a significantly improved
approximation of the constant-Q behavior. Moczo and Kristek [17] showed that the
generalized Maxwell body used by Emmerich and Korn is equivalent to superim-
posing n SLS mechanisms. More recently, Savage et al. [22] found that a SLS with
n = 3 mechanisms gives a close to constant Q-value over 1.7 decades in frequency,
and illustrated how a higher number of mechanisms allows the frequency band to
be made wider. Komatitisch et al. [12] and Käser et al. [11] reported very accu-
rate results for the LOH.3 test problem [4], using three-dimensional time-domain
simulations with n = 3 or n = 4 mechanisms.

Large computational resources are often required for including realistic viscoelas-
ticity in three-dimensional seismic wave simulations. The reason is that the n-SLS
viscoelastic model requires a number of so called memory variables to be evolved
together with the primary dependent variables (velocities and stresses, or displace-
ments). Each memory variable adds an extra differential equation into the system
that governs seismic wave propagation, and the numbers of extra variables and
equations are proportional to n.

In the first order velocity-stress formulation, which commonly is used in seis-
mic applications [23, 9, 14, 11], the isotropic elastic wave equation is a system of
nine partial differential equations (PDEs) that govern the three components of the
velocity and the six unique components of the symmetric stress tensor. In this for-
mulation, it is natural to introduce memory variables that express the viscoelastic
contribution to the stress tensor. Each SLS in the viscoelastic model adds six PDEs
and six memory variables to the system, resulting in a total of 9+6n equations [11].
Hence, even for the moderate value of n = 3, the first order formulation leads to a
system of 27 coupled PDEs.
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The isotropic elastic wave equation can also be written as a second order system,
consisting of three PDEs governing the three components of the displacement (or
the velocity). Also in this case can the viscoelastic model be formulated in terms
of six memory variables per SLS [13]. However, based on the observation that only
the divergence of the stress tensor is needed, we propose a more memory efficient
approach where only three additional differential equations are added for each SLS.
The total number of differential equations in the resulting system is 3 + 3n, which
is significantly less than the 9 + 6n equations for the first order formulation.

In addition to memory variables, there are extra material parameters in the vis-
coelastic model. The isotropic elastic wave equation has three material parameters:
density and two Lamé parameters. The viscoelastic model adds two material pa-
rameters for each SLS. All these material parameters are field variables that may
vary in space in a general way. The second order formulation uses the same number
of material parameters as the first order velocity-stress approach. Emmerich and
Korn’s [7] procedure for determining these parameters has been used extensively
in seismic applications [14, 11]. Liu and Archuleta [16] presented an alternative
method for determining these parameters, based on interpolation.

To save computational resources, some researchers [5, 9] have argued that the vis-
coelastic system could be reduced in size by placing the associated memory variables
on alternating grid points in each direction of the three-dimensional computational
grid. The memory requirement for such a coarse grained n = 8 model would thus
be the same as an n = 1 model stored at every grid point. However, the accuracy of
this approach is not well understood, especially when discontinuities are present in
the material model [14]. Furthermore, it is not clear how to use the coarse graining
technique when n != 8.

The reminder of the paper is organized as follows. After presenting the governing
equations in Section 1.1, we derive an energy estimate for the continuous problem in
Section 2, giving sufficient conditions on the material parameters for well-posedness
of the viscoelastic wave equation. The spatial discretization is presented in Section 3,
where the semi-discrete problem is shown to satisfy a corresponding energy estimate.
In Section 4, we present a second order accurate explicit time discretization of the
viscoelastic wave equation. We prove that this scheme is stable and satisfies an
energy estimate under two conditions. First, the material parameters must satisfy
the aforementioned conditions for well-posedness and, secondly, the time step must
satisfy a CFL-type time step restriction. In Section 5 we outline Emmerich and
Korn’s [7] least squares method for determining the viscoelastic parameters. We
evaluate the actual frequency dependence of Q for different number of mechanisms
and widths of the frequency band. Three-dimenional numerical simulations are
reported in Section 6, where we also outline how our scheme can be generalized to
a composite grid [21], with hanging nodes on the grid interface. Examples are given
for the LOH.3 test case.
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1.1 Viscoelastic modeling

The stress-strain relation in a linear viscoelastic material is defined by a convolution
between stress relaxation functions and the time derivative of the strain, see e.g. [3].
Corresponding to the time-independent Lamé parameters for an elastic material, the
two stress relaxation functions λ(t) and µ(t) specify the stress tensor in an isotropic
viscoelastic material,

T =

∫ t

−∞

λ(t − τ)
∂ Tr(D(u))(τ)

∂τ
I dτ +

∫ t

−∞

2µ(t − τ)
∂D(u)(τ)

∂τ
dτ, (1)

where I is the Kronecker delta. Let u = u(x, t) be the displacement in the domain
x ∈ Ω ⊂ R3. The strain tensor D is the symmetric part of the displacement gradient,

D(u) =
1

2

(
∇u + ∇uT

)
, Tr(D(u)) ≡ ∇ · u.

We consider a material model obtained by superimposing n SLS mechanisms, leading
to the stress-relaxation functions (see e.g. [3])

µ(t) = H(t)

[

µ0 −
n∑

ν=1

µν(1 − e−ωνt)

]

, λ(t) = H(t)

[

λ0 −
n∑

ν=1

λν(1 − e−ωνt)

]

, (2)

where H(t) is the Heaviside step function, ων > 0 are relaxation frequencies, and
µν and λν are material parameters. After inserting (2) into (1) and integrating by
parts in time, the stress tensor becomes

T = λ0(∇ · u)I + 2µ0D(u)

−
∫ t

−∞

n∑

ν=1

ωνλνe
−ωντ (∇ · u)I dτ − 2

∫ t

−∞

n∑

ν=1

ωνµνe
−ωντD(u) dτ.

There are several ways of introducing memory variables. In the second order formu-
lation, only the divergence of the stress tensor is needed to evolve the displacement.
As we shall see below, a memory efficient formulation is obtained by using the
vector-valued memory variables

ū(ν)(x, t) = ων

∫ t

−∞

u(x, τ)e−ων(t−τ) dτ. (3)

In terms of these memory variables, the stress tensor can written as

T = λ0(∇ · u)I + 2µ0D(u) −
n∑

ν=1

[
λν(∇ · ū(ν))I + 2µνD(ū(ν))

]
. (4)
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The displacement is governed by Euler’s equation for elasticity,

ρ
∂2u

∂t2
= ∇ · T + F,

where ρ is the density of the material and F represents the external forcing. Evalu-
ating the divergence of (4) gives,

ρ
∂2u

∂t2
= L(λ0, µ0)u −

n∑

ν=1

L(λν , µν)ū
(ν) + F, x ∈ Ω, t ≥ 0,

u(x, 0) = g0(x), ut(x, 0) = g1(x), x ∈ Ω,

(5)

where g0, g1 are the initial data and the spatial operator is

L(λ, µ)u =: ∇(λ(∇ · u)) + ∇ · (2µD(u)) . (6)

Appropriate boundary conditions for u will be discussed below.
We want to formulate an initial-value problem for the memory variables ū(ν). By

splitting the time-integration in (3) over negative and positive times, we arrive at
the modified formula,

ū(ν)(x, t) = ḡ(ν)(x)e−ωνt + ων

∫ t

0

u(x, τ)e−ων(t−τ) dτ, t ≥ 0, (7)

where

ḡ(ν)(x) = ων

∫ 0

−∞

u(x, τ)eωντ dτ.

By differenting (7) in time we find that the memory variables satisfy the differential
equations

1

ων

∂ū(ν)

∂t
+ ū(ν) = u, x ∈ Ω, t ≥ 0,

ū(ν)(x, 0) = ḡ(ν)(x), x ∈ Ω,
(8)

for ν = 1, 2, . . . , n. Note that ḡ(ν)(x) depends on the displacement history for t < 0,
which in many applications is unknown. It is therefore common to assume that
ḡ(ν)(x) = 0.

The coupled system (5), (8) will in the following be referred to as the viscoelastic
wave equation. There are three components in each of the vector variables u and
ū(ν), ν = 1, 2, . . . , n, resulting in 3+3n differential equations for as many dependent
variables. All spatial derivatives in the system occur in (5). Furthermore, note
that each viscoelastic contributions to the right hand side of (5) is of the form
L(λν , µν)ū(ν). This is the same spatial operator as in the purely elastic case, but with
different material parameters and operating on ū(ν) instead of u. Apart from being
memory efficient, our formulation is therefore also straight forward to implement.
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2 Energy estimate for the continuous viscoelastic

wave equation

We define a scalar product for real-valued vector functions u(x) = (u1(x), u2(x), u3(x))T

and v(x) = (v1(x), v2(x), v3(x))T in the bounded domain x ∈ Ω,

(u,v) =

∫

Ω

u · v dΩ, u · v =
3∑

j=1

ujvj,

with corresponding norm ‖u‖2 = (u,u).
Gauss’ theorem implies that the spatial operator L(λν , µν) in (6) satisfies

(v,L(λν , µν)u) =

∫

Γ

v · [(λν∇ · u)n + 2µνD(u)n] dΓ

− (∇ · v,λν∇ · u) −
∫

Ω

2µνD(v) : D(u) dΩ, (9)

where Γ is the boundary of Ω with outwardly directed unit normal n. The con-
traction between two tensors with Cartesian components Aij and Bij is defined by
A : B =

∑3
i=1

∑3
j=1 AijBij.

The identity (9) has the structure

(v,L(λν , µν)u) = −Sν(v,u) + Bν(v,u), (10)

where Sν(v,u) and Bν(v,u) denote the interior and boundary terms, respectively,

Sν(v,u) = (∇ · v,λν∇ · u) +

∫

Ω

2µνD(v) : D(u) dΩ, (11)

Bν(v,u) =

∫

Γ

v · [(λν∇ · u)n + 2µνD(u)n] dΓ. (12)

It follows by inspection of (11) that each function Sν(u,v) is symmetric and bi-
linear. Because Sν(u,u) is an integral over quadratic terms, it is non-negative if
µν(x) > 0 and λν(x) > 0.

It is well known that the spatial operator L(λν , µν)u = 0 for all u ∈ U, where U

is the six-dimensional subspace corresponding to rigid body motions. The null-space
U is spanned by three translational and three rotational basis functions. Since the
boundary term (12) is zero for all u ∈ U, we have Sν(u,u) = 0 for all u ∈ U. It
is straight forward to show that, for sufficiently regular u, there are no additional
non-trivial solutions of Sν(u,u) = 0.

We consider two boundary conditions for (5), (8). First, the Dirichlet condition

u(x, t) = 0, x ∈ Γ, t ≥ 0. (13)
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The second type of boundary condition is the traction-free condition T n = 0 im-
posed on the viscoelastic stress tensor (4),

(λ0∇ · u)n + 2µ0D(u)n =
n∑

ν=1

(λν∇ · ū(ν))n + 2µνD(ū(ν))n, x ∈ Γ, t ≥ 0. (14)

On a free surface boundary, (14) is the physically correct boundary condition because
it sets the normal component of the viscoelastic stress tensor to zero. Note that
no explicit boundary condition is needed for the memory variables in (13) or (14),
because they are solutions of the ordinary differential equations (8) on the boundary.

Define the viscoelastic energy according to

e(t) = ‖
√
ρut‖2 + S0(u,u) −

n∑

ν=1

Sν(u,u) +
n∑

ν=1

Sν(u − ū(ν),u − ū(ν)). (15)

Our first main result, stated below, provides sufficient conditions on the material
properties for making the viscoelastic wave equation a well-posed problem in the
energy semi-norm.

Theorem 1. Assume that the material data satisfy

λ0 −
n∑

ν=1

λν ≥ λ̃min > 0, µ0 −
n∑

ν=1

µν ≥ µ̃min > 0, (16)

and
ρ ≥ ρmin > 0, λν ≥ λmin > 0, µν ≥ µmin > 0, ν = 1, . . . , n. (17)

Then the solution of the viscoelastic wave equation (5), (8), with F = 0, subject to
either the boundary condition (13), or (14), has non-increasing energy,

e(t) ≤ e(0), t ≥ 0. (18)

Furthermore, e(t) can be bounded from below according to

ρmin‖ut(·, t)‖2 + 2µ̃min‖D(u)(·, t)‖2 + λ̃min‖∇ · u(·, t)‖2 ≤ e(t). (19)

Here, we define the norm of the tensor function D(u) by ‖D‖2 =
∫
Ω D : D dΩ.

Proof. The non-increasing energy follows from the identity

1

2

de

dt
= B0(ut,u) −

n∑

ν=1

Bν(ut, ū
(ν)) −

n∑

ν=1

1

ων
Sν(ū

(ν)
t , ū(ν)

t ), (20)

together with Sν(ū(ν), ū(ν)) ≥ 0, and the fact that either one of the boundary con-
ditions (13)–(14) make the boundary term B0 −

∑n
ν=1 Bν equal to zero. Hence,

de/dt ≤ 0, which shows (18).
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To prove identity (20), multiply (5) by ut and integrate over Ω,

1

2

d

dt
(ut, ρut) = (ut, ρutt) = (ut,L(λ0, µ0)u) −

n∑

ν=1

(ut,L(λν , µν)ū
(ν))

= −S0(ut,u) + B0(ut,u) +
n∑

ν=1

Sν(ut, ū
(ν)) −

n∑

ν=1

Bν(ut, ū
(ν)) (21)

The symmetry and bi-linear properties of Sν show that

S0(ut,u) =
1

2

d

dt
S0(u,u), (22)

Sν(ut, ū
(ν)) =

d

dt
Sν(u, ū(ν)) − Sν(u, ū(ν)

t ). (23)

Furthermore, (8) gives

Sν(u, ū(ν)
t ) =

1

2

d

dt
Sν(ū

(ν), ū(ν)) +
1

ων
Sν(ū

(ν)
t , ū(ν)

t ),

which, substituted for the last term in (23), leads to

Sν(ut, ū
(ν)) =

1

2

d

dt

(
2Sν(u, ū(ν)) − Sν(ū

(ν), ū(ν))
)
−

1

ων
Sν(ū

(ν)
t , ū(ν)

t ). (24)

Finally, the identity

Sν(u − ū(ν),u − ū(ν)) = Sν(u,u) − 2Sν(u, ū(ν)) + Sν(ū
(ν), ū(ν)),

makes it possible to rewrite (24) as

Sν(ut, ū
(ν)) =

1

2

d

dt

(
Sν(u,u) − Sν(u − ū(ν),u − ū(ν))

)
−

1

ων
Sν(ū

(ν)
t , ū(ν)

t ). (25)

Relations (22) and (25) give

− S0(ut,u) +
n∑

ν=1

Sν(ut, ū
(ν)) = −

n∑

ν=1

1

ων
Sν(ū

(ν)
t , ū(ν)

t )

−
1

2

d

dt

[

S0(u,u) +
n∑

ν=1

Sν(u − ū(ν),u − ū(ν)) −
n∑

ν=1

Sν(u,u)

]

,

which inserted into (21) yields the identity (20).
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It remains to prove that the energy can be bounded from below. Inspection of
(11) shows that

S0(u,u) −
n∑

ν=1

Sν(u,u) = (∇ · u, λ̃∇ · u) +

∫

Ω

2µ̃D(u) : D(u) dΩ,

λ̃ = λ0 −
n∑

ν=1

λν , µ̃ = µ0 −
n∑

ν=1

µν . (26)

Hence, if (16) is satisfied, λ̃ ≥ λ̃min > 0 and µ̃ ≥ µ̃min > 0, so

S0(u,u) −
n∑

ν=1

Sν(u,u) =
∥∥∥
√
λ̃∇ · u

∥∥∥
2

+
∥∥∥
√

2µ̃D(u)
∥∥∥

2

.

Because of material condition (17), the terms Sν(u− ū(ν),u− ū(ν)) in (15) are non-
negative and do not have to be bounded further. Furthermore, assumption (16)
gives λ̃ ≥ λ̃min, µ̃ ≥ µ̃min, which together with ρ ≥ ρmin proves (19).

Remark 1. If u is a solution of the viscoelastic wave equation subject to the Dirichlet
boundary condition (13), there can be no rigid body motion component in u. Korn’s
inequality [10] can then be used to bound the spatial derivatives in e(t), leading to

c
(
‖ut‖2 + ‖∇u‖2 + ‖u‖2

)
≤ e, c = const.

Remark 2. The conditions on λν for bounding the spatial operator in e(t) can be
relaxed to

3λ̃+ 2µ̃ ≥ ε > 0, 3λν + 2µν ≥ ε > 0, ν = 0, 1, . . . , n.

where ε is a constant. The above conditions guarentee that the bulk modulus, λ +
2µ/3, is positive.

3 The spatially discretized problem

We discretize the viscoelastic wave equation on the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b,
0 ≤ z ≤ c. We use a grid size h > 0 and define a grid by xi = (i−1)h, yj = (j−1)h,
zk = (k − 1)h, with 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1, 0 ≤ k ≤ Nz + 1. The domain
sizes and the grid spacing are defined such that xNx = a, yNy = b, and zNz = c.
The points outside the domain (i = 0, i = Nx + 1, j = 0, j = Ny + 1, k = 0, and
k = Nz + 1) are ghost points, which are used to simplify the discretization of the
boundary conditions. A scalar grid function is denoted ui,j,k = u(xi, yj, zk) and ui,j,k

is a vector valued grid function.
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The spatial discretization is based on our energy conserving method for the elastic
wave equation [18, 19, 21]. While the ordinary differential equations (8) simply are
enforced at each grid point in space, the semi-discrete problem corresponding to (5)
is given by

ρi,j,k
d2ui,j,k

dt2
= Lh(λ0, µ0)ui,j,k −

n∑

ν=1

Lh(λν , µν)ū
(ν)
i,j,k + Fi,j,k,

ui,j,k(0) = f0(xi,j,k), (ut)i,j,k (0) = f1(xi,j,k),

(27)

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz, where Lh(λ, µ)ui,j,k is the discretization
of the continuous operator (6). In component form,

Lh(λ, µ)u =
(
L(1)

h (λ, µ)u, L(2)
h (λ, µ)u, L(3)

h (λ, µ)u
)T

,

where

L(1)
h (λ, µ)u =Dx

−

(
Ex

1/2(2µ + λ)Dx
+u1

)
+ Dy

−

(
Ey

1/2(µ)Dy
+u1

)
+ Dz

−

(
Ez

1/2(µ)Dz
+u1

)

+ D̃x
0

(
λD̃y

0u
2 + λD̃z

0u
3
)

+ D̃y
0

(
µD̃x

0u
2
)

+ D̃z
0

(
µD̃x

0u
3
)

, (28)

L(2)
h (λ, µ)u =Dx

−

(
Ex

1/2(µ)Dx
+u2

)
+ Dy

−

(
Ey

1/2(2µ + λ)Dy
+u2

)
+ Dz

−

(
Ez

1/2(µ)Dz
+u2

)

+ D̃x
0

(
µD̃y

0u
1
)

+ D̃y
0

(
λD̃x

0u
1 + λD̃z

0u
3
)

+ D̃z
0

(
µD̃y

0u
3
)

, (29)

L(3)
h (λ, µ)u =Dx

−

(
Ex

1/2(µ)Dx
+u3

)
+ Dy

−

(
Ey

1/2(µ)Dy
+u3

)
+ Dz

−

(
Ez

1/2(2µ + λ)Dz
+u3

)

+ D̃x
0

(
µD̃z

0u
1
)

+ D̃y
0

(
µD̃z

0u
2
)

+ D̃z
0

(
λD̃x

0u
1 + λD̃y

0u
2
)

. (30)

Similar to the continuous case we denote the components of u by (u1, u2, u3), and
use a multi-dimensional notation of the standard divided difference operators, i.e.,

Dx
+ui,j,k = (ui+1,j,k − ui,j,k)/h, Dx

−ui,j,k = Dx
+ui−1,j,k, Dx

0 =
1

2
(Dx

+ + Dx
−).

The boundary modified operator for differences in the x-direction is defined by

D̃x
0ui,j,k =






Dx
+ui,j,k, i = 1,

Dx
0ui,j,k, 2 ≤ i ≤ Nx − 1,

Dx
−ui,j,k, i = Nx,

and the multi-dimensional averaging operator is defined by

Ex
1/2(µ)i,j,k = (µi+1,j,k + µi,j,k) /2.
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The superscripts on the difference and averaging operators denote the direction in
which the operator is applied and we use corresponding definitions for the difference
operators in the y- and z-directions.

We introduce a discrete scalar product for real-valued vector grid functions,

(u,v)h = h3
Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

a(x)
i a(y)

j a(z)
k ui,j,k · vi,j,k,

where the weights satisfy

a(x)
i =

{
1/2, i = 1 or i = Nx,

1, 2 ≤ i ≤ Nx − 1,

with corresponding definitions of a(y) and a(z). The discrete norm is defined by
||u||2h = (u,u)h.

The spatial discretization satisfies a summation by parts principle corresponding
to the integration by parts relation (10). In [19] (Lemma 3.1), it is proven that

(v,Lh(λν , µν)u)h = −S(h)
ν (v,u) + B(h)

ν (v,u). (31)

The expression for the interior term S(h)
ν is given in Appendix A. As in the contin-

uous case, S(h)
ν (v,u) = S(h)

ν (u,v). The expression for S(h)
ν (u,u) consists of a sum

of quadratic terms and, if λν ≥ λmin > 0 and µν ≥ µmin > 0, it is positive semi-
definite. In Appendix B we show that the null space of S(h)

ν (u,u) is six-dimensional
and corresponds to the same rigid body motions as in the continuous case.

The non-symmetric boundary term B(h)
ν (u,v) was derived in the context of the

elastic wave equation in [19]. Here we restate the result to explain how to impose
boundary conditions for the viscoelastic case,

B(h)
ν (u,v) = h2

Ny∑

j=1

Nz∑

k=1

a(y)
j a(z)

k

(
− u1,j,k · B(h)

ν (v)(x)
1,j,k + uNx,j,k · B(h)

ν (v)(x)
Nx,j,k

)

+ h2
Nx∑

i=1

Nz∑

k=1

a(x)
i a(z)

k

(
− ui,1,k · B(h)

ν (v)(y)
i,1,k + ui,Ny ,k · B(h)

ν (v)(y)
i,Ny ,k

)

+ h2
Nx∑

i=1

Ny∑

j=1

a(x)
i a(y)

j

(
− ui,j,1 · B(h)

ν (v)(z)
i,j,1 + ui,j,Nz · B(h)

ν (v)(z)
i,j,Nz

)
. (32)

In the above expression, B(x)
ν , B(y)

ν , and B
(z)
ν denote the discretized boundary stresses

normal to the x, y, and z-directions, respectively. The discretization of the normal
stresses is given by the boundary terms that emerges in identity (31), as described
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in [19]. For example, the discretized boundary stress in the z-direction on k = 1 or
k = Nz is

B(h)
ν (u)(z)

i,j,k =





1
2µ

(ν)
i,j,k−1/2D

z
−ui,j,k + 1

2µ
(ν)
i,j,k+1/2D

z
+ui,j,k + µ(ν)

i,j,kD̃
x
0wi,j,k

1
2µ

(ν)
i,j,k−1/2D

z
−vi,j,k + 1

2µ
(ν)
i,j,k+1/2D

z
+vi,j,k + µ(ν)

i,j,kD̃
y
0wi,j,k

1
2(2µ

(ν) + λ(ν))i,j,k−1/2Dz
−wi,j,k + 1

2(2µ
(ν) + λ(ν))i,j,k+1/2Dz

+wi,j,k

+λ(ν)
i,j,k(D̃

x
0ui,j,k + D̃y

0vi,j,k).




.

(33)

Here, µ(ν)
i,j,k+1/2 = Ez

1/2(µ
(ν))i,j,k, and the grid point values of the material parameters

are defined by µ(ν)
i,j,k = µν(xi,j,k), with a similar definition of λ(ν)

i,j,k.
To simplify the presentation we only describe the boundary conditions along the

boundary k = Nz; the other boundaries are treated in a corresponding way. The
Dirichlet boundary condition (13) is enforced by setting

ui,j,Nz = 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, t ≥ 0, (34)

and the discretized version of the free surface boundary condition (14) is

B
(h)
0 (u)(z)

i,j,Nz
=

n∑

ν=1

B(h)
ν (ū(ν))(z)

i,j,Nz
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, t ≥ 0. (35)

Because the discretized problem satisfies identity (31), S(h)
ν is positive semi-

definite, and (34) or (35) will eliminate contributions from B(h)
ν terms, we can derive

an energy estimate corresponding to Theorem 1 in exactly the same way as in the
continuous case. The resulting estimate follows by replacing the continuous scalar
product by (·, ·)h, replacing Sν by S(h)

ν , and Bν by B(h)
ν . However, the lower bound

of the energy needs to be modified because of the spatial discretization. This is
discussed in more detail in the following section.

4 Time discretization

We discretize time on a uniform grid tm = m∆t with step size ∆t > 0, and use
the notation um

i,j,k for the approximation of ui,j,k(tm). For the elastic wave equation,
the second order accurate Strömer scheme provides a stable time-discretization [18].
Here we use the same scheme to discretize (27),

ρ
um+1 − 2um + um−1

∆t2
= Lh(λ0, µ0)um −

∑n
ν=1 Lh(λν , µν)ū(ν),m + Fm,

u0 = f0, u−1 = f̃1,
(36)
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for m = 0, 1, . . ., where the grid index (i, j, k) has been suppressed to improve
readability. There are several ways of discretizing the memory variables ū(ν) in
time. As for the continuous and the semi-discrete cases, we choose to work with the
differential equation (8) rather than the integral equation (7). If um was already
known, it is not hard to verify that the discretization

1

ων

1

2∆t

(
ū(ν),m+1 − ū(ν),m−1

)
+

1

2

(
ū(ν),m+1 + ū(ν),m−1

)
= um, ν = 1, 2, . . . , n (37)

would be unconditionally stable. The subject of this section is to investigate the
stability of the coupled system (36)-(37).

The following lemma gives the discrete statement of decreasing energy, corre-
sponding to (20).

Lemma 1. The solution of (36), (37) with Fm = 0 satisfies the discrete energy
estimate

em+1/2 = em−1/2 + B(h)
0 (um+1 − um−1,um) −

n∑

ν=1

B(h)
ν (um+1 − um−1, ū(ν),m)

−
1

2∆t

n∑

ν=1

1

ων
S(h)
ν

(
ū(ν),m+1 − ū(ν),m−1, ū(ν),m+1 − ū(ν),m−1

)
, (38)

where the discrete energy is defined by

em+1/2 =

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

+
1

4
S(h)

0

(
um+1 + um,um+1 + um

)

−
1

4
S(h)

0

(
um+1 − um,um+1 − um

)
−

1

4

n∑

ν=1

S(h)
ν

(
um+1 + um,um+1 + um

)

−
1

4

n∑

ν=1

S(h)
ν

(
um+1 − um,um+1 − um

)
+ Pm+1/2, (39)

and the term Pm+1/2 is given by

Pm+1/2 =
1

2

n∑

ν=1

S(h)
ν

(
um+1 − ū(ν),m,um+1 − ū(ν),m

)

+
1

2

n∑

ν=1

S(h)
ν

(
um − ū(ν),m+1,um − ū(ν),m+1

)
.

Proof. See Appendix C.

We can now state our main result for the fully discrete problem.
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Theorem 2. Assume that

µ0 −
n∑

ν=1

µν ≥ µ̃min > 0, λ0 −
n∑

ν=1

λν ≥ λ̃min > 0, (40)

ρ ≥ ρmin > 0, µν ≥ µmin > 0, λν ≥ λmin > 0, ν = 1, 2, . . . , n, (41)

at all grid points, and that the time-step satisfies the CFL-restriction

∆t ≤ ∆tmax =
2
√

1 − α√
ζmax

, ζmax = max
v #=0

∑n
ν=0 S(h)

ν (v,v)

(v, ρv)h
, (42)

where 0 < α+ 1 is a positive constant. Then, the solution of (36)-(37) with Fm = 0
subject to either the boundary condition (34), or (35), satisfies the energy estimate

α

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

≤ em+1/2 ≤ em−1/2 ≤ . . . ≤ e1/2, any m ≥ 1,

Proof. Each one of the boundary conditions (34)–(35) make the boundary terms

B(h)
0 −

∑n
ν=1 B(h)

ν vanish in identity (38). Furthermore, the right hand side of (38)

is non-positive because S(h)
ν (v,v) is non-negative. Therefore,

em+1/2 ≤ em−1/2.

To show the lower bound on the discrete energy (defined by (39)), we first ob-

serve that S(h)
ν depends linearly on the material coefficients λν and µν . Recall the

definitions of λ̃ and µ̃ from (26). We note that

1

4
S(h)

0

(
um+1 + um,um+1 + um

)
−

1

4

n∑

ν=1

S(h)
ν

(
um+1 + um,um+1 + um

)

=
1

4
S̃(h)(um+1 + um,um+1 + um),

where S̃(h)(u,u) is defined in the same way as S(h)
0 (u,u), but with λ̃ and µ̃ replacing

λ0 and µ0, respectively. Because of (40), λ̃ > 0 and µ̃ > 0, so

S̃(h)(um+1 + um,um+1 + um) ≥ 0, (43)

for all um+1 + um. Secondly, the terms in (39) that depend on v = um+1 − um can
be bounded from below because of the inequality

(v, ρv)h −
∆t2

4

n∑

ν=0

S(h)
ν (v,v) ≥ α(v, ρv)h = α‖

√
ρv‖2

h, α > 0. (44)
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To show (44), first note that it holds for v = 0. Assuming that v != 0, we obtain

∆t2

4

∑n
ν=0 S(h)

ν (v,v)

(v, ρv)h
≤ 1 − α (45)

by a simple rearrangement of (44). The time step restriction (42) shows that (44)
holds. Finally, because of (43), (44), and Pm+1/2 ≥ 0, the lower bound

α

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

≤ em+1/2

follows from (39).

Theorem 2 shows that the discretization (36), (37) is stable in the energy semi-
norm and, furthermore, that the forward in time difference (um+1 − um)/∆t is
bounded. The upper bound depends on the initial energy, e1/2, which obviously
can be bounded independent of the grid size h if the initial data is bounded and
sufficiently smooth. More precise estimates would be obtained if the spatial terms
in the energy,

1

4
S(h)

0

(
um+1 + um,um+1 + um

)
−

1

4

n∑

ν=1

S(h)
ν

(
um+1 + um,um+1 + um

)
,

could be bounded from below by c‖um+1 + um‖2
h, with c being independent of h.

Another way of stating this property is that the smallest eigenvalue of the spatial
operator can be bounded away from zero, independently of h. While it is relatively
straight forward to obtain a lower bound of the spatial operator in terms of the
symmetric part of the discrete solution gradient (similar to (19) in the continuous
case), it is not possible to include all terms of the discrete gradient, or ‖u‖h, in
the bound. The reason is that S(h)(u,u) has a six-dimensional null-space (see Ap-
pendix B), so S(h) = 0 for some non-trivial functions. Such a bound can only be
obtained if additional conditions are imposed that remove all rigid body compo-
nents from the solution. One way of obtaining such a bound is to impose a Dirichlet
boundary condition on at least one side of the computational domain. We assert
that a discrete version of Korn’s inequality [10] holds in this case, but we only have
an outline of a rather technical and lengthy proof. However, similar results have
been proven for finite difference approximations of the two-dimensional elastostatic
equations, with a free surface boundary condition on one side of the computational
domain and Dirichlet conditions on the other three sides, see [8].

The spectral radius ζmax, which is needed to determine the time step, can be
difficult to calculate, especially when the material properties are heterogeneous and
unsmooth. For simulations of the purely elastic wave equation, we have developed
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the following technique. We first use a v. Neumann analysis to evaluate the largest
stable local time step at each grid point. This estimate uses the local material
properties in a homogeneuous material model, assumes periodic boundary conditions
to allow an explicit evaluation of the largest stable local time step. The estimated
time step is then taken as the minimum of all local time steps. The presense of free
surface boundary conditions can impose further restrictions on the time step [18].
Unsmooth material properties can also require the time step to be reduced. Both
these effects are accounted for by using a time step which is about 15 percent smaller
than the estimated value.

Based on the observation that the sum
∑n

ν=0 S(h)
ν (v,v) is linear in the material

data, the spectral radius for the viscoelastic wave equation can be estimated in the
same way as for the purely elastic wave equation, simply by replacing µ0 and λ0

by the sums
∑n

ν=0 µν and
∑n

ν=0 λν , respectively. Since λν > 0 and µν > 0 for
all ν = 0, 1, . . . , n, the time step must always be reduced when viscoelastic terms
are included. However, because of material condition (40),

∑n
ν=0 µν < 2µ0 and∑n

ν=0 λν < 2λ0. Consequently, the spectral radius of the spatial operator for the
viscoelastic problem is at most a factor of two larger than in the corresponding
elastic case, and the time step never needs to be reduced by more than a factor of√

2.

5 Determining model parameters

To make the presentation self-contained, we need to state some well-known results
from the theory of viscoelastic materials. We suggest the book by Carcione [3] for
a more thorough presentation of this theory.

In frequency space, the viscoelastic shear modulus is defined in terms of the
Fourier transform of the stress relaxation function (2),

M̂S(ω) =: iωµ̂(ω) = µ0 −
n∑

ν=1

µν

1 + iω/ων
, (46)

where ω is the dual variable of t, and µ0 is called the unrelaxed shear modulus. The
quality factor for shear waves is defined by

QS(ω) =:
Re M̂S(ω)

Im M̂S(ω)
=

1 −
∑n

ν=1

βνω2
ν

ω2
ν + ω2

∑n
ν=1

βνωων
ω2
ν + ω2

, βν =
µν

µ0
. (47)

To obtain a linear least squares problem for the βν coefficients, we follow the
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approach laid out by Emmerich and Korn [7]. Relation (47) is re-written as

1

QS(ω)
=

n∑

ν=1

βνωων
ω2
ν + ω2

+
1

QS(ω)

n∑

ν=1

βνω2
ν

ω2
ν + ω2

=
n∑

ν=1

βν
ωων + ω2

ν/QS(ω)

ω2
ν + ω2

(48)

The relaxation frequencies, ων , are evenly distributed in a logarithmic sense over
the frequency band [ωmin,ωmax], i.e.,

ων = ωmin r(ν−1), ν = 1, 2, . . . , n, r = (ωmax/ωmin)1/(n−1).

Setting QS(ω(c)
k ) = Q0 = const. in (48) at 2n− 1 collocation frequencies ω(c)

k , which
also are distributed logarithmically over the same frequency band, results in 2n− 1
linear equations for the n − 1 coefficients βν . This over-determined linear system is
solved in the least squares sense.

To choose the unrelaxed shear modulus µ0, we need to study the wave propaga-
tion speed in a viscoelastic material. Consider the one-dimensional half-line problem

ρutt = σx, x ≥ 0, t ≥ 0, (49)

u(0, t) = g(t), t ≥ 0, (50)

where σ(x, t) is the viscoelastic stress. In one space dimension, the strain is given
by ε = ux, and the stress satisfies

σ(t) =

∫ t

−∞

µ(t − τ)
∂ε

∂t
(τ) dτ, (51)

After Fourier transforming (51), we get

σ̂(ω) = µ̂(ω)iωε̂(ω) =: M̂S(ω)ε̂(ω). (52)

Fourier transforming (49), (50) and using (52), gives

ρω2û + M̂Sûxx = 0, x ≥ 0, −∞ < ω < ∞,

û(0,ω) = ĝ(ω), −∞ < ω < ∞,

which is solved by

û(x,ω) = ĝ(ω)eiωx
√

ρ/M̂S , Re

(
iω

√
ρ/M̂S

)
< 0.

The loss angle, δ, is defined by tan δ = 1/QS. By writing M̂S =
∣∣∣M̂S

∣∣∣ (cos(δ) + i sin(δ)),

the appropriate root is given by
√
ρ/M̂S = −ρ1/2

∣∣∣M̂S

∣∣∣
−1/2

(cos(δ/2) − i sin(δ/2)) .
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For harmonic boundary data, g(t) = eiωt, the solution can be written

u(x, t) = eiω(t−x/cs)e−α|ω|x, cs =
|M̂S|1/2

ρ1/2 cos(δ/2)
, α =

1

cs
tan(δ/2). (53)

The wave travels to the right (increasing x) with phase velocity cs and wave length
2πcs/|ω|. The amplitude of the wave decays by a factor exp(−2π tan(δ/2)) per wave
length.

Since the phase velocity depends on ω, it is necessary to specify at what reference
frequency cs(ω) is given. The definition of the viscoelastic shear modulus (46) gives

c2
s(ω) =

µ0|ms(ω)|
ρ cos2(δ/2)

, ms(ω) = 1 −
n∑

ν=1

βν
ω2
ν − iωων
ω2
ν + ω2

. (54)

The function ms(ω) can be evaluated once βν and ων have been determined. The
unrelaxed modulus corresponding to shear speed cs, measured at reference frequency
ωr, is then given by

µ0 =
ρc2

s(ωr) cos2(δ/2)

|ms(ωr)|
. (55)

Once µ0 and βν are determined, (47) gives

µν = µ0βν , ν = 1, 2, . . . , n.

Since compressional and shear waves are observed to attenuate at different rates,
it is desirable to use two quality factors in the material model: QP and QS. The
attenuation of compressional waves is modeled by introducing the stress-relaxation
function (not the bulk modulus) κ(t) =: λ(t) + 2µ(t) , where

κ(t) = κ0 −
n∑

ν=1

κν(1 − e−ωνt), γν =
κν
κ0

. (56)

Corresponding to (46), the Fourier transform of the viscoelastic modulus for com-
pressional waves is defined by

M̂P (ω) =: iωκ̂(ω) = κ0 −
n∑

ν=1

κν
1 + iω/ων

.

The quality factor for compressional waves, QP , follows by replacing βν by γν in
(47). We substitute βν by γν and QS by QP in (48) and solve for γν , using the same
relaxation and collocation frequencies as before.

The unrelaxed compressional modulus, κ0, is determined by the compressional
wave speed cp, measured at reference frequency ωr,

κ0 =
ρc2

p(ωr) cos2(δp)

|mp(ωr)|
, mp(ω) = 1 −

n∑

ν=1

γν
ω2
ν − iωων
ω2
ν + ω2

,
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where tan(δp) = 1/QP . Given κ0 and γν , we have κν = κ0γν .
After the coefficients µν and κν have been determined, the coefficients of the first

Lamé parameter are given by

λν = κν − 2µν , ν = 0, 1, . . . , n. (57)

5.1 Numerical evaluation of viscoelastic properties

A wave with frequency f traveling through a media with shear speed cs has wave
length ls = cs/f . On a computational grid with grid size h, the accuracy of the
numerical solution can be characterized by the number of grid points per shortest
wave length,

Ppw =
ls
h

=
cs

fh
=

2πcs

ωh
, (58)

where ω = 2πf is the angular frequency. Depending on the order of accuracy
and other details of the numerical method, the numerical solution has acceptable
accuracy if the shortest wave satisfies Ppw ≥ Pmin. For example, our second order
accurate finite difference method requires Pmin ≈ 15, see [20].

When modeling viscoelastic wave propagation, it is natural to let (58) guide the
upper limit of the frequency band for approximating Q(ω),

ωmax = C
2πcs

Pminh
, C = O(1). (59)

The lower limit of the frequency band, ωmin, can be estimated using the size of the
computational domain, Lmax, which in large scale three-dimensional computations
often corresponds to O(100) of the shortest wave lengths, or more. The lowest
resolvable angular frequency can therefore be estimated by order

ωmin =
2πcs

Lmax
≈

2πcs

100 ls
=
ωmax

100
.

Hence, it is desireable for the viscoelastic model to satisfy Q(ω) ≈ Q0 over two
decades in frequency. As computers grow larger, it will be possible to resolve a
wider range of wave lengths in numerical simulations. This will result in additional
requirements on the fidelity in the viscoelastic modeling.

Because the computational cost of viscoelastic modeling increases with the num-
ber of mechanisms, n, it is desirable to use the smallest value of n that gives ac-
ceptable accuracy in the approximation of Q(ω). When evaluating the properties
of the viscoelastic modulus (46), we note that it depends on the frequency ratios
ω/ων . Hence, the properties of M̂ and Q can be studied in terms of the normalized
frequency

ω̃ =
ω

ωmin
,
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Figure 1: Actual quality factor Q(ω) approximating Q0 = 100 in the frequency band
ω̃ ∈ [1, 100], for different numbers of viscoelastic mechanisms.

as long as the relaxation and collocation frequencies are normalized in the same way.
We start the numerical evaluation of our viscoelastic model by evaluating the

quality factor (47) for different number of mechanisms, n. In Figure 1, we present
Q(ω) when the coefficients βν are chosen to approximate Q0 = 100 using the above
least squares procedure, in the frequency band ω̃ ∈ [1, 100]. Clearly, n = 2 provides
inadequate modeling of a constant Q over two decades in frequency, but n = 3 gives a
much better approximation. Increasing n further only leads to small improvements.

It is interesting to note that in all models, Q(ω) grows rapidly for ω > ωmax.
Hence the viscoelastic model does not provide significant damping of higher (poorly
resolved) frequencies in the numerical solution, and does not act as an artificial
dissipation.

To evaluate how wide the frequency band can be for different numbers of vis-
coelastic mechanisms, we set ω̃min = 1 and study the maximum relative error,

e(ω̃max) = max
ω̃∈[1,ω̃max]

|Q(ω̃) − Q0|
Q0

,

as function of ω̃max. In Figure 2, we see that all values of n give small errors for
sufficiently small values of ω̃max, and that the error grows rapidly when the frequency
band exceeds a certain width. Max relative errors of about 3% are obtained at
ω̃max ≈ 10 for n = 2, at ω̃max ≈ 80 for n = 3, at ω̃max ≈ 150 for n = 4, and at
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Figure 2: Max relative error (Q(ω̃)−Q0)/Q0 over the frequency band ω̃ ∈ [1, ω̃max],
as function of ω̃max. Here, Q0 = 100 and the different lines correspond to different
numbers of viscoelastic mechanisms.

ω̃max ≈ 2000 for n = 5. These findings are comparable to the results in [22].
So far, we have only evaluated the viscoelastic model for Q0 = 100. To investigate

how the error depends on Q0, we take n = 3 and repeat the previous experiment for
different values of Q0, see Figure 3. The results show that the error depends very
weakly on Q0 for Q0 ≥ 100. For smaller values of Q0, the relative error gets larger,
but the shape of the curves remains essentially unchanged. However, the relative
error grows much slower than 1/Q0, so the absolute error gets smaller with Q0. Also
note that the value of ω̃max ≈ 80, beyond which the error starts to grow rapidly, is
independent of Q0.

To demonstrate how the phase velocity varies with ω, we evaluate the factor
|m1/2|/ cos(δ/2) in (54). The results shown in Figure 4 illustrate that the frequency
dependence on the phase velocity increases dramatically when Q gets smaller. Also
note that the phase velocity grows approximately linearly on a logarithmic scale
in ω, throughout the frequency band [ωmin,ωmax]. Outside this band, the phase
velocity tends to constant values.
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Figure 3: Max relative error (Q(ω̃)−Q0)/Q0 over the frequency band ω̃ ∈ [1, ω̃max],
as function of ω̃max. Here, the number of viscoelstic mechanisms is n = 3 and the
different lines correspond to different values of Q0.

Figure 4: Relative phase velocity |ms|1/2/ cos(δ/2) over the frequency band ω̃ ∈
[1, 100]. Here, n = 3, and the different colors correspond to different values of Q.
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6 Numerical experiments

6.1 Comments on the implementation

Our implementation of the purely elastic wave equation [18, 19, 21], is based on the
discrete formulation (36), with n = 0. This approach requires one subroutine to be
implemented for evaluating the term Lh(λ, µ)um. Note that the same subroutine can
be used to evaluate the viscoelastic terms Lh(λν , µν)ū(ν),m when n > 0, by passing
different material properties and applying it to ū(ν),m instead of um. Hence, once
the purely elastic implementation has been verified, it is rather straight forward to
include viscoelastic effects in our formulation.

The memory variables do not need boundary conditions because they satisfy
ordinary differential equations. That is, once um has been calculated at all grid
points (including ghost points), (37) can be used to evaluate u(ν),m+1 everywhere.
To impose the free surface boundary condition (35) on um+1, we first calculate
u(ν),m+1, which enters the free surface boundary condition as a forcing term.

The energy conserving grid refinement interface condition, described in [21], is
also easily generalized to the viscoelastic case. Here, we only need to add con-
tributions from the memory variables to the normal stresses in the grid interface
equations. Compared to the grid interface coupling equations in the purely elas-
tic case, only the right hand side in the linear system is modified. There is not
enough space to present the details here, but because the boundary terms cancel
along the grid refinement interface, the energy conservation at the grid interface
for the purely elastic case generalizes to a proof of energy decay for the viscoelastic
equations with grid refinement interface. Some of the computations presented below
use grid refinements, and illustrate the accuarcy and computational efficiency of this
approach.

All calculations in this section were obtained with version 2.1 of the parallel open
source code WPP [20].

6.2 Method of manufactured solutions

We start by evaluating the error in the numerical solution, when both the material
and the solution are smooth. Let the computational domain be the cube (x, y, z) ∈
[0, 5]3, impose a free surface boundary condition on the z = 0 boundary and Dirichlet
conditions on all other boundaries. The test will use one viscoelastic mechanism
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Nx h ‖u(·, t) − ue(·, t)‖∞ ‖ū(1)(·, t) − ū
(1)
e (·, t)‖∞ p p

31 1.67 · 10−1 1.63 · 10−1 1.19 · 10−1 – –

61 8.33 · 10−2 4.74 · 10−2 3.45 · 10−2 1.78 1.79

121 4.17 · 10−2 1.24 · 10−2 9.14 · 10−3 1.93 1.92

241 2.08 · 10−2 3.15 · 10−3 2.33 · 10−3 1.98 1.97

Table 1: Errors in the numerical solution at time t = 4.8, on a uniform grid, when
the exact solution is (60). Here, p and p are convergence exponents for u and ū(1),
respectively.

(n = 1). We take the material properties to be

ρ(x, y, z) = Aρ (2 + sin(ωmx + θm) cos(ωmy + θm) sin(ωmz + θm))

µ0(x, y, z) = Aµ (3 + cos(ωmx + θm) sin(ωmy + θm) sin(ωmz + θm))

λ0(x, y, z) = Aλ (2 + sin(ωmx + θm) sin(ωmy + θm) cos(ωmz + θm))

µ1(x, y, z) = Aµ (3/2 + 1/2 cos(ωmx + θm) cos(ωmy + θm) sin(ωmz + θm))

λ1(x, y, z) = Aλ (1/2 + 1/4 sin(ωmx + θm) cos(ωmy + θm) sin(ωmz + θm))

where ωm = 3.2, θm = 0.8, Aρ = 2, Aµ = 3, and Aλ = 1. Note that these material
parameters satisfy conditions (40)-(41) of Theorem 2. The internal forcing, bound-
ary forcing and initial conditions are chosen such that the exact (manufactured)
solution becomes

ue(x, y, z, t)= sin(ω(x − cet)) sin(ωy + θ) sin(ωz + θ)

ve(x, y, z, t)= sin(ωx + θ) sin(ω(y − cet)) sin(ωz + θ)

we(x, y, z, t)= sin(ωx + θ) sin(ωy + θ) sin(ω(z − cet))

ue(x, y, z, t)= cos(ω(x − cet) + θ) sin(ωx + θ) cos(ω(z − cet) + θ)

ve(x, y, z, t)= sin(ω(x − cet)) cos(ω(y − cet) + θ) cos(ωz + θ)

we(x, y, z, t)= cos(ωx + θ) cos(ωy + θ) sin(ω(z − cet) + θ)

(60)

with ω = 3, θ = 0.2, and ce = 1.3. Here, ū(1) = (u, v, w). Table 1 gives the errors
in the numerical solution, evaluated in maximum norm for both the displacement
and the memory variables at time t = 4.8, for different grid sizes. The maximum
norm is computed over the computational domain and over the three components
of the vector variables. The errors in both variables clearly decrease as O(h2).

Next, we perform the same test with the same data, but on a composite grid
with one base grid and one refinements. The base grid has grid size 2h in 2 ≤ z ≤ 5
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Nx 2h ‖u(·, t) − ue(·, t)‖∞ ‖ū(1)(·, t) − ū
(1)
e (·, t)‖∞ p p

31 1.67 · 10−1 1.18 · 10−1 9.73 · 10−2 – –

61 8.33 · 10−2 2.90 · 10−2 2.41 · 10−2 2.02 2.01

121 4.17 · 10−2 7.36 · 10−3 5.97 · 10−3 1.99 2.01

Table 2: Errors in the numerical solution at time t = 4.8, on a composite grid, when
the exact solution is (60). Here, p and p are convergence exponents for u and ū(1),
respectively.

and the refined grid has size h in 0 ≤ z ≤ 2. In terms of the number of grid points
in the x-direction on the base grid, the grid sizes are

2h =
5

Nx − 1
, h =

5

2(Nx − 1)
,

in the base and refined grids, respectively. Table 2 gives the errors in the numerical
solutions, evaluated in maximum norm for both the displacements and the memory
variables at time t = 4.8. Table 2 shows that both errors are of the order O(h2). This
test verifies that the implementation is second order accurate, and also supports our
mathematical results concerning the stability of the method.

6.3 Point source in a uniform material

To evaluate the convergence properties of our scheme and the influence of the number
of viscoelastic mechanisms, we consider the half-space problem with homogeneous
material properties (using SI units): ρ = 2, 650, cs = 2, 000, cp = 4, 000, QP =
200, and QS = 100. In the simulation, the half-space z ≥ 0 is truncated to the
computational domain (x, y) ∈ [0, 4 · 104]2, z ∈ [0, 2 · 104]. A small earthquake is
modeled by placing a moment tensor point source at location xs, using the forcing
function

F(x, t) = g(t)M∇δ(x − xs), M = 1018





0 1 0

1 0 0

0 0 0



 (61)

located at xs = 104(2, 2, 0.21)T . Here ∇δ denotes the gradient of the Dirac distri-
bution. We use the second order accurate technique described in [21] to discretize
the singular source term. The time-function is given by the Gaussian,

g(t) =
1

σ
√

2π
e−(t−t0)2/2σ2

, (62)
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Figure 5: Semi-analytical solutions as function of time at reciever location xr =
2.6 · 104, yr = 2.8 · 104, zr = 0 in a homogeneous material. The red line corresponds
to the solution in a viscoelastic material with QP = 200 and QS = 100. The black
line corresponds to a purely elastic material with the same density and wave speeds
as in the viscoelastic material.

with spread σ = 0.25 and offset t0 = 1.5. Using notation from seismology , this
moment tensor point source is characterized by the sesimic moment m0 = 1018 and
the angles dip= 90◦, rake= 0◦, and strike= 0◦ (when the x-axis is directed towards
North), see [1]. The solution is recorded in time at xr = 2.6 · 104, yr = 2.8 · 104,
zr = 0 and compared to a semi-analytical frequency-wavenumber (FK) solution [25]
using the FK code [24]. This solution is denoted us(xr, t). An example is shown in
Figure 5, where we present the radial, transverse, and vertical components of the
solution, illustrating the effects of viscoelasticity. These components are defined in a
polar coordinate system centered at the (x, y)-location of the source, with the vertical
component in the z-direction (positive down), i.e., uvert = w. Since xr −xs = 6 ·103,
yr − ys = 8 · 103, the radial component is urad = 0.6u + 0.8v, and the transverse
component is utran = −0.8u + 0.6v.

We measure the error in the time interval 0 ≤ t ≤ T using the L2-norm in time,
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Uniform grid Composite grid

h ‖u(xr, ·) − us(xr, ·)‖2 p2 h ‖u(xr, ·) − us(xr, ·)‖2 p2

200 1.08 · 10−1 — 400/200 2.32 · 10−1 —

100 2.82 · 10−2 1.94 200/100 6.96 · 10−2 1.73

50 7.40 · 10−3 1.93 100/50 1.59 · 10−2 2.12

Table 3: Errors and convergence rates in the numerical solution when the material
is homogeneous in space. The norms are taken over the period 0 ≤ t ≤ 10.

i.e.

‖u(xr, ·)‖2
2 =

1

T

∫ T

0

(
urad(xr, t)

2 + utran(xr, t)
2 + uvert(xr, t)

2
)

dt. (63)

We estimate the convergence rate using the formula p2(h) = log2(e(2h)/e(h)), where
e(h) is the norm of the error in the solution with grid size h.

A free surface boundary condition is imposed on the z = 0 boundary and homoge-
neous Dirichet conditions are used on all other boundaries together with a damping
sponge layer, which reduces artificial reflections. Three viscoelastic mechanism were
used in these experiments with ω1/2π = 0.05, ω2/2π = 0.5 and ω3/2π = 5. The
phse velocities were specified at reference frequency 1 Hz.

We first discretize the computational domain on a uniform grid and study the
error for the grid sizes h = 400, 200, and 100, see Table 3. We then repeat the
experiment using a composite grid, where a fine grid with size h discretizes 0 ≤ z ≤
1, 000, and a coarser grid with size 2h is used for z ≥ 1, 000. Our results indicate
that the solutions on both grid configurations converge to zero as O(h2), when the
grid is sufficiently fine. Note that the error levels for each composite grid are in
between those on uniform grids with the same grid sizes as in the base and refined
grids, respectively.

6.4 The LOH.3 layer over half-space problem

We consider test problem LOH.3 which was used by Day et al. [4] to evaluate
the accuracy of anelastic attenuation in seismic wave propagation codes. This test
uses a simple material model with piecewise constant material properties. In the
top layer (0 ≤ z ≤ 1, 000), the material properties are (in SI units) ρ = 2, 600,
cp = 4, 000, cs = 2, 000, QP = 120, and QS = 40. In the half-space below the top
layer (z > 1, 000), the material properties are ρ = 2, 700, cp = 6, 000, cs = 3, 464,
QP = 155.9, and QS = 69.3. Phase velocities are given at reference frequency
2.5 Hz. We model the half-space problem using a computational domain of size
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n ‖u(xr, ·) − ue(xr, ·)‖2 CPU time (64 nodes x 8 cores)

2 1.31 · 10−1 25 min., 30 sec.

3 4.84 · 10−2 31 min., 14 sec.

4 5.09 · 10−2 36 min., 7 sec.

Table 4: CPU timings and L2 norm of the error in the numerical solution of the
LOH.3 test problem, for different number of viscoelastic mechanisms.

(x, y) ∈ [0, 40000]2 and 0 ≤ z ≤ 20000. As before, a free surface boundary condition
is imposed on the z = 0 boundary, and homogeneous Dirichlet conditions together
with a sponge layer are used to reduce artificial reflections from all other boundaries.
A small earthquake is modeled by the moment tensor point source (61) located at
xs = 20, 000, ys = 20, 000, at depth zs = 2, 000. The time-function is given by the
Gaussian (62) with spread σ = 0.05 and offset t0 = 0.2. We evaluate the solution
at reciever # 10, located at xr = 26, 000, yr = 28, 000, zr = 0. A semi-analytical
frequency-wavenumber solution was obtained using a modified version of the method
described in Apsel and Luco [2]. This solution is denoted ue(xr, t).

The velocity structure of this problem makes it an ideal candidate for grid re-
finement, and we use a fine grid with size h = 25 in the top layer (0 ≤ z ≤ 1000)
and a base grid with size 50 in the half-space z ≥ 1, 000. At this resolution, the
discretization errors are sufficiently small to distinguish the influence of the number
of mechanisms, n, in the viscoelastic model. In all cases, the lowest and highest
relaxation frequencies were ω1/2π = 0.15 and ωn/2π = 15, respectively. We ran the
simulations to time T = 10, corresponding to approximately 2560 time steps (the
exact number depends on n). The simulations were performed on 64 nodes on the
Atlas linux cluster at LLNL, where each node has 8 cores. The L2-norm of the error
in the numerical solutions, as well as the CPU time, are reported in Table 4. The
error is significantly smaller with n = 3 mechanisms than with n = 2. However,
the error does not decrease further for n = 4, which is consistent with our findings
in Section 5.1. Since each additional mechanism requires more computer resources,
we conclude that n = 3 mechanisms suffices for this test case. A visual comparison
of the semi-analytical and the numerical solutions with n = 3 mechanisms can be
found in Figure 6. We note that the agreement is very good in general, but some
overshoots are distinguishable in the transverse component. To estimate the number
of grid points per shortest wave length, we evaluate (58) using the highest significant
frequency in the source time-function,

fup ≈ 2.5
1

2πσ
=

50

2π
, Ppw =

cs

fuph
=

2000 · 2π
50 · 25

≈ 10.05.
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Figure 6: Solution of the LOH.3 test problem at reciever # 10. The black line is the
semi-analytical solution, and the red line shows the numerical solutions with n = 3
mechanisms.
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7 Conclusions

We have described an energy stable finite difference approximation of the three-
dimensional viscoelatic wave equation with an n-SLS material model. The proposed
scheme discretizes the governing equations in second order displacement formulation
using 3n memory variables, making it significantly more memory efficient than the
commonly used first order velocity-stress formulation. The discretization is a gen-
eralization of our summation-by-parts finite difference discretization of the elastic
wave equation [18, 19, 21]. We have derived sufficient conditions on the material pa-
rameters for well-posedness of the viscoelastic wave equation. We have also proven
that our scheme is stable and satisfies an energy estimate under two conditions.
First, the material parameters must satisfy the conditions for well-posedness and,
secondly, the time step must satisfy a CFL-type time step restriction.

The new method has been implemented as part of version 2.1 of the open source
software WPP [20], which also allows for grid refinements with hanging nodes as
well as free surface boundaries on realistic topographies.

Plans for the near future include generalizations to fourth order accuracy. This
will improve the efficiency of the method in terms of the number of grid points per
wave length that is required to obtain a given accuracy. A smaller discretization
error might make it necessary to also reduce the viscoelastic modeling error. This
can be done by increasing the number of viscoelastic mechanisms.

A Detailed expression for S(h)
ν (v,u)

A detailed expression for S(h)
ν (v,u) was derived in [19]. Here we re-state the result

using the vector notation v = (v1, v2, v3)T and u = (u1, u2, u3)T . For simplicity we
drop subscript ν on S(h), λ, and µ. We have,

S(h)(v,u)h = A(v,u) +
h2

4
R(v,u), (64)

where

A(v,u) = 2(Dx
+v1, Ex

1/2(µ)Dx
+u1)mx + 2(Dy

+v2, Ey
1/2(µ)Dy

+u2)my

+ 2(Dz
+v3, Ez

1/2(µ)Dz
+u3)mz + (D̃x

0v
1 + D̃y

0v
2 + D̃z

0v
3,λ(D̃x

0u
1 + D̃y

0u
2 + D̃z

0u
3))h

+ (D̃y
0v

1 + D̃x
0v

2, µ(D̃y
0u

1 + D̃x
0u

2))h + (D̃z
0v

1 + D̃x
0v

3, µ(D̃z
0u

1 + D̃x
0u

3))h

+ (D̃z
0v

2 + D̃y
0v

3, µ(D̃z
0u

2 + D̃y
0u

3))h. (65)
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The term R(v,u) is given by

R(v,u) = (Dx
+Dx

−v1,λDx
+Dx

−u1)rx + (Dy
+Dy

−v1, µDy
+Dy

−u1)ry

+ (Dz
+Dz

−v1, µDz
+Dz

−u1)rz + (Dx
+Dx

−v2, µDx
+Dx

−u2)rx + (Dy
+Dy

−v2,λDy
+Dy

−u2)ry

+ (Dz
+Dz

−v2, µDz
+Dz

−u2)rz + (Dx
+Dx

−v3, µDx
+Dx

−u3)rx

+ (Dy
+Dy

−v3, µDy
+Dy

−u3)ry + (Dz
+Dz

−v3,λDz
+Dz

−u3)rz. (66)

We mention in passing that there is a typo in equation (A.9) in [19]. In that paper
the Dx

+Dx
−, Dy

+Dy
−, and Dz

+Dz
− operators were incorrectly given as Dx

+Dx
+, etc. The

restricted scalar products are defined by

(u, v)mx = h3
Nx−1∑

i=1

Ny∑

j=1

Nz∑

k=1

ui,j,kvi,j,k, (u, v)rx = h3
Nx−1∑

i=2

Ny∑

j=1

Nz∑

k=1

ui,j,kvi,j,k,

and (u, v)my is defined by a similar expression, but with the sum over i taken from
1 to Nx and the sum over j from 1 to Ny − 1. In the same way, (u, v)ry has the
sum over i taken from 1 to Nx and the sum over j from 2 to Ny − 1. The sums in
(u, v)mz and (u, v)rz are defined by corresponding permutations.

Note that both A and R are symmetric in their arguments. If µ > 0 and λ > 0, all
terms in S(h)(u,u) are non-negative, i.e., S(h)(u,u) is positive semi-definite. Finally,

note that due to the restricted norms and the one-sided operators (D̃x
0 etc.) at the

boundaries, no ghost points values are used in any of the terms in (65) and (66).

B The null-space of S(h)
ν (u,u)

In this section we discuss when S(h)
ν (u,u) = 0. We simplify the notation of the

vector components according to u = (u, v, w)T and drop the ν-index on the material
parameters λ and µ. Throughout the section we assume

λ ≥ λmin > 0, µ ≥ µmin > 0,

at all grid points. By inspection of (64)-(66), we see that S(h)(u,u) is a sum of
quadratic terms. Hence, S(h)(u,u) = 0 if and only if all terms are zero at each grid
point. In order to make the term R(u,u) = 0, all second divided differences of u

must be zero at all grid points. Hence, u can only vary linearly in x, y and z.
The expression for A(u,u) in (65) is a sum of seven non-negative terms. The only

way A(u,u) = 0 is if all seven terms in the sum are identically zero at all grid points.

For all functions u that are linear in x, both Dx
+u and D̃x

0u are exact expressions
of the x-derivative of u. Since u is linear in all three coordinate directions, we can
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therefore replace all divided differences in by derivatives, and write the terms in
A(u,u) as

s1 = (ux)
2, s2 = (vy)

2, s3 = (wz)
2, s4 = (uy + vx)

2,

s5 = (uz + wx)
2, s6 = (vz + wy)

2, s7 = (ux + vy + wz)
2.

If s1 = s2 = s3 = 0, all terms in s7 are also zero. Hence, there are only six
independent conditions on u for making S(h)(u,u) = 0:

ux = 0, vy = 0, wz = 0, (67)

uy + vx = 0, uz + wx = 0, vz + wy = 0. (68)

After some trivial compatibility arguments we arrive at the most general form of
f(y, z), g(x, z), and h(x, y) that satisfy (67), (68)

u(y, z) = f0 + y fy0 + z fz0 + yz fyz0, (69)

v(x, z) = g0 + x gx0 + z gz0 + xz gxz0, (70)

w(x, y) = h0 + xhx0 + y hy0 + xy hxy0. (71)

Inserting (69)-(71) into (68) gives

fy0 + zfyz0 + gx0 + zgxz0 = 0,

fz0 + yfyz0 + hx0 + yhxy0 = 0,

gz0 + xgxz0 + hy0 + xhxy0 = 0.

These expressions should be satisfied for any x, y, z. Taking x = y = z = 0 gives

fy0 + gx0 = 0, fz0 + hx0 = 0, gz0 + hy0 = 0. (72)

Therefore,
fyz0 + gxz0 = 0, fyz0 + hxy0 = 0, gxz0 + hxy0 = 0.

This non-singular linear system has the trivial solution fyz0 = gxz0 = hxy0 = 0.
Relation (72) provides three linear equations for q = (fy0, fz0, gx0, gz0, hx0, hy0)T ,

Cq = 0, C =





1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1



 .

Obviously, rank (C) = 3. There are therefore three linearly independent non-trivial
solutions of (72). In addition, the three undetermined constants f0, g0, and h0
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result in six linearly independent solutions of (67)-(68). They are often called the
translational and rotational invariants, and can be written as





u

v

w



 =
6∑

q=1

αqaq, a1 =





1

0

0



 , a2 =





0

1

0



 , a3 =





0

0

1



 , (73)

and

a4 =





y

−x

0



 , a5 =





−z

0

x



 , a6 =





0

z

−y



 . (74)

In summary, the null space for S(h)(u,u) has dimension six and is spanned by
{aq}6

q=1.

C Proof of Lemma 1

Throughout this section, we simplify the notation by dropping the superscript (h)

on the bilinear forms in (31) and denote S(h)
ν and B(h)

ν by Sν and Bν respectively.
To reduce the amount of algebra, we assume n = 1, and introduce the notation
ū(1),m = ūm.

We start by writing (36) (for the case n = 1) as

ρ
um+1 − um

∆t2
− ρ

um − um−1

∆t2
= Lh(λ0, µ0)u

m − Lh(λ1, µ1)ū
m

and form the scalar product with um+1 − um−1 to obtain

(um+1 − um−1, ρ
um+1 − um

∆t2
− ρ

um − um−1

∆t2
)h

= (um+1 − um−1,Lh(λ0, µ0)u
m)h − (um+1 − um−1,Lh(λ1, µ1)ū

m)h.

For the left hand side, we write um+1 − um−1 = (um+1 − um) + (um − um−1) and
use (v + w,v − w)h = ‖v‖2

h − ‖w‖2
h. For the right hand side we use identity (31)

on both terms. We obtain

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

−
∥∥∥∥
√
ρ
um − um−1

∆t

∥∥∥∥
2

h

= −S0(u
m+1 − um−1,um)

+ B0(u
m+1 − um−1,um) + S1(u

m+1 − um−1, ūm) − B1(u
m+1 − um−1, ūm) (75)
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The term I1 =: S1(um+1 − um−1, ūm) can be written

I1 = S1(u
m+1, ūm) + S1(u

m, ūm+1) − S1(u
m, ūm−1) − S1(u

m−1, ūm)

+ S1(u
m, ūm−1 − ūm+1).

By susbstituting (37) into the last term of I1,

S1(u
m, ūm−1 − ūm+1) = −

1

2ω1∆t
S1

(
ūm+1 − ūm−1, ūm+1 − ūm−1

)

−
1

2
S1

(
ūm+1 + ūm−1, ūm+1 − ūm−1)

)
.

Since S1(u,v) = S1(v,u),

I1 = S1(u
m+1, ūm) + S1(u

m, ūm+1) − S1(u
m, ūm−1) − S1(u

m−1, ūm)

−
1

2
S1(ū

m+1, ūm+1) +
1

2
S1(ū

m−1, ūm−1))

−
1

2ω1∆t
S1

(
ūm+1 − ūm−1, ūm+1 − ūm−1

)
.

Adding and subtracting S1(ūm, ūm)/2 to I1 and reorganizing the terms in (75) gives

em+1/2
1 = em−1/2

1 + B0(u
m+1 − um−1,um) − B1(u

m+1 − um−1, ūm)

−
1

2ω1∆t
S1

(
ūm+1 − ūm−1, ūm+1 − ūm−1

)
.

where

em+1/2
1 =

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

+ S0

(
um+1,um

)
− S1

(
um+1, ūm

)
− S1

(
um, ūm+1

)

+
1

2

[
S1

(
ūm+1, ūm+1

)
+ S1 (ūm, ūm)

]

This is equivalent to (38) for the case n = 1. The case n ≥ 2 is treated analogously.
For general n ≥ 1, the expression for the discrete energy becomes

em+1/2 =

∥∥∥∥
√
ρ
um+1 − um

∆t

∥∥∥∥
2

h

+ S0(u
m+1,um)

−
n∑

ν=1

(
Sν(u

m+1, ū(ν),m) + Sν(u
m, ū(ν),m+1)

)

+
1

2

n∑

ν=1

(
Sν(ū

(ν),m+1, ū(ν),m+1) + Sν(ū
(ν),m, ū(ν),m)

)
. (76)

By expanding all quadratic terms in (39) it is straight forward to verify that it is
equivalent to (76). This concludes the proof of Lemma 1.
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using a Padé approximant method. Geophys. J. R. Astr. Soc., 78:105–118,
1984.

[7] H. Emmerich and M. Korn. Incorporation of attenuation into time-dependent
computations of seismic wave fields. Geophysics, 52(9):1252–1264, 1987.

[8] V. D. Glushenkov. A difference analog of the Korn inequality. J. Soviet Math.,
46:2176–2182, 1989.

[9] R. W. Graves and S. M. Day. Stability and accuracy analysis of coarse-grain
viscoelastic simulations. Bull. Seismo Soc. Amer., 93(1):283–300, 2003.

[10] C.O. Horgan. Korn’s inequalities and their applications in continuum mechan-
ics. SIAM Rev., 37:491–511, 1995.
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